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The nonlinear chromaticity plays an important part in the dynamics of a particle at far off-momentum in a
strong focusing circular accelerator. We derived the exact perturbative formula of the nonlinear dispersion
function of a ring accelerator and gave explicit expressions of higher-order terms. Using the perturbative
formula for the dispersion function, we derived the higher-order expressions for the nonlinear chromaticity up
to the third order. We numerically estimated the nonlinear chromaticity of the SPring-8 storage ring, and it
showed fairly good agreement with the measurement.
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I. INTRODUCTION

A high-energy storage ring dedicated to a high-brilliance
light source can be characterized by low emittance. The ring
optics needs a strong focusing force to achieve this low emit-
tance. Hence, to correct the large chromaticity of the storage
ring, one must install strong sextupole magnets, which inevi-
tably enhance the nonlinearity of the optics. However, the
beam lifetime is another important figure of merit of a high-
brilliance light source. A larger momentum acceptance is
then necessary to achieve a longer beam lifetime. To enlarge
the momentum acceptance, one has to know the dynamics of
a particle with large momentum deviation, where the nonlin-
earity of the optics is very strong. We should know the non-
linear behavior of the chromaticity because the chromaticity
plays an important role in determining the momentum accep-
tance.

To the best of our knowledge[1–8], no exact formula of
the higher-order terms of the nonlinear chromaticity is avail-
able. This is partly because we did not have a precise for-
mula to calculate the higher-order dispersion function, which
was recently derived in our previous paper[9]. Although the
recipe to compute the higher-order dispersion function recur-
rently is given in Ref.[1], an explicit formula higher than the
second order cannot be found. We derived the complete per-
turbative formula for the higher-order dispersion function to
the fourth order and determined its validity by comparing the
numerical estimation with the measurement at the SPring-8
storage ring[9]. Furthermore, in some of the aforementioned
research[1–3], the higher-order modulations of the optics
functions due to the energy deviation were not correctly
taken into account. Thus, the higher-order terms were calcu-
lated inconsistently. The purpose of this paper is to derive a
precise perturbative formula for the higher-order terms of
nonlinear chromaticity. We establish the higher-order for-
mula by reexamining the transfer matrix formulation for a
particle dynamics with off-energy.

In Sec. II, after a brief explanation for the formulation of
particle dynamics in a ring accelerator, we derive the pertur-

bative formula of the nonlinear chromaticity. In Sec. III, we
numerically estimate the nonlinear chromaticity of the
SPring-8 storage ring and compare it with an experimental
measurement.

II. FORMULATION OF NORLINEAR CHROMATICITY

A. Preliminary

In this paper, we assume the following properties for the
composing magnets.

(1) There is no vertical curvature.
(2) There is no skew magnetic element.
(3) All magnets have separate functions.
(4) All magnets are approximated to have a hard edge.

The HamiltonianH, which describes the motion of a particle
in such a ring, is given by[9,10]

Hsx,px,y,py,sd = − f1 + KxssdxgÎs1 + dd2 − px
2 − py

2

+
1

2
f1 + Kxssdxg2

+ on=0

gnssd
sn + 2d! o

m=0

fn/2g+1

s− dm

3Sn + 2

m
Dxn+2−2my2m, s1d

whered is the fractional deviation of the momentum,

d =
p − p0

p0
, s2d

with the nominal momentump0 and s is the path length
along the reference orbit. In addition,Kx is the horizontal
curvature andgn’s are the strengths of multipole magnets,
respectively. Furthermore, we used standard mathematical
notations, such as the Gauss symbolf·g and the binomial
coefficients ·

·
d. Note that the momentapx,y are normalized by

the nominal momentump0.
The presence of the linear term with respect tox in Eq. (1)

implies that with nonzerod, the trivial solutionx;0 can
never satisfy the equation of horizontal motion derived from
the Hamiltonian. A dispersion function is introduced to ex-
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tract the closed orbit for an off-momentum particle. The full
order nonlinear solutions of the off-momentum trajectory
xessd and the conjugate momentumpessd satisfy

xe8 = s1 + Kxxed
pe

Îs1 + dd2 − pe
2
, s3d

pe8 = KxfÎs1 + dd2 − pe
2 − 1g − Kx

2xe − o
n=0

gn

sn + 1d!
xe

n+1. s4d

These can be solved by the perturbative expansion

xessd = dhssd = do
n=0

dnhnssd, s5d

pessd = dzssd = do
n=0

dnznssd. s6d

The explicit expressions of the higher-order terms of the dis-
persion function up to the fourth order are given in Ref.[9].

In the following, we consider the linear motion of the
betatron oscillation around the off-momentum trajectory
fxessd ,pessdg. To shift the origin of phase space tosxe ,ped, we
perform a canonical transformation fromsx,pxd to sxb ,pxb

d,
which is generated by

F2sx,pxb
,sd = fx − xessdgfpxb

+ pessdg. s7d

The generating functionF2sx,pxb
,sd yields the transforma-

tion equations

x = xb + xessd, s8d

px = pxb
+ pessd, s9d

and

Hb = H +
] F2

] s
, s10d

where the identity transformations fory and py have been
suppressed. Then, up to the second order onxb, y, pxb

, and
py, the HamiltonianHb is given by

Hbsxb,pxb
,y,py,sd =

1 + Kxssdxessd

2Îs1 + dd2 − pe
2ssd

F s1 + dd2

s1 + dd2 − pe
2ssd

pxb

2

+ py
2G +

Kxssdpessd
Îs1 + dd2 − pe

2ssd
xbpxb

+
1

2
Kx

2ssdxb
2 +

1

2Son=0

gnssd
n!

xe
nssdD

3sxb
2 − y2d. s11d

The equations of motion obtained from the above Hamil-
tonian are

d

ds
S xb

pxb

D = TxssdS xb

pxb

D , s12d

d

ds
S y

py
D = TyssdS y

py
D , s13d

where

Txssd =1
Kxpe

Îs1 + dd2 − pe
2

s1 + dd2s1 + Kxxed
fs1 + dd2 − pe

2g3/2

− Kx
2 − o

n=0

gn

n!
xe

n −
Kxpe

Îs1 + dd2 − pe
2
2

; S Axssd Bxssd
− Cxssd − Axssd

D , s14d

Tyssd =1 0
1 + Kxxe

Îs1 + dd2 − pe
2

o
n=0

gn

n!
xe

n 0 2 ; S 0 Byssd
− Cyssd 0

D .

s15d

After performing the transformation

S z

pz
D = UzssdS z̄

pz̄
D , s16d

Uzssd = S Bz
1/2 0

Bz
−1/2s 1

2Bz
−1Bz8 − Azd Bz

−1/2D , s17d

for z=x,y, respectively, we have “Hill’s equation”

d

ds
S z̄

pz̄
D = T z̄ssdS z̄

pz̄
D s18d

with

T z̄ssd = S 0 1

− Gzssd 0
D , s19d

Gzssd = BzCz − Az8 + 1
2sln Bzd88 − fAz − 1

2sln Bzd8g2. s20d

According to the standard manner of Hill’s equation, we can
construct the transfer matrixM z̄ss1us0d,

US z̄

pz̄
DU

s1

= M z̄uss1us0dS z̄

pz̄
D

s0

, s21d

which can be represented by the Twiss parameters as[11]
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M z̄ss1us0d

=1 Îbz̄ss1d

bz̄ss0dfcoscz̄u
s1

s0
+ az̄ss0dsin cz̄u

s1

s0
g Îbz̄ss1dbz̄ss0dsin cz̄u

s1

s0

−
az̄ss1d − az̄ss0d
Îbz̄ss1dbz̄ss0d

coscz̄u
s1

s0
−

1 + az̄ss1daz̄ss0d
Îbz̄ss1dbz̄ss0d

sin cz̄u
s1

s0
Îbz̄ss0d

bz̄ss1dfcoscz̄u
s1

s0
− az̄ss1dsin cz̄u

s1

s0
g2 s22d

with the betatron phase

cz̄u
s1

s0
=E

s0

s1 ds

bz̄ssd
. s23d

Then, the one turn transfer matrix ats0 is given by

M z̄ss0 + Lus0d

= Scosmz̄ + az̄ss0dsin mz̄ bz̄ss0dsin mz̄

− gz̄ss0dsin mz̄ cosmz̄ − az̄ss0dsin mz̄
D ,

s24d

whereL is the circumference of the ring. Here, we have used
the periodicity of the Twiss parameters and defined the phase
advance over the circumference

mz̄ =E
s0

s0+L ds

bz̄ssd
. s25d

From Eq.(24), one can relate the tunenz̄;mz̄/ s2pd to the
transfer matrix as

cosmz̄ = cos 2pnz̄ = 1
2Tr M z̄ss0 + Lus0d. s26d

Now, we perturbatively calculate the nonlinear chromatic-
ity based on the defining equation of the tune(26) [7]. Here-
after, for simplicity, we omit the suffix denoting the coordi-
nates such asx,y if they are not necessary. The expansion of
the phase advancem with respect to the momentum deviation
d,

m = o
n=0

dnmn, s27d

gives

cosm = o
n=0

dnxn, s28d

where

x0 = cosm0, s29d

x1 = − m1sin m0, s30d

x2 = − m2sin m0 − 1
2m1

2cosm0, s31d

x3 = − sm3 − 1
6m1

3dsin m0 − m2m1cosm0, s32d

and so on. The transfer matrixM is also expanded with
respect tod as

M ss0 + Lus0d = o
n=0

dnM nss0 + Lus0d. s33d

Comparing Eqs.(28) and (23), we can obtain the represen-
tation of xn in terms of the transfer matrices,

xn = 1
2Tr M nss0 + Lus0d. s34d

Now, we derive the explicit representations of the higher-
order transfer matricesM nss0+Lus0d in terms of the pertur-
bative expansion of the impact matrixTssd. Dividing the
distance betweens1 ands0 ss1.s0d into an infinite number of
infinitesimal ones, we can write the transfer matrix as the
infinite product of the infinitesimal ones,

M ss1us0d = lim
m→`

p
i=0

m−1

M sti+1utid s35d

with ti =s0+fss1−s0d /mgi. From Eq.(18), the transfer matrix
corresponding to the infinitesimal interval is given by

M sti+1utid = I + sti+1 − tidTstid, s36d

whereI is the identity matrix,

I = S1 0

0 1
D . s37d

ExpandingT in terms ofd,

Tssd = o
n=0

dnTnssd, s38d

and gathering the terms order by order in the matrix product
(35), we can derive the perturbative expansion of the transfer
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matrix M ss1us0d. At the zeroth order, we have the unper-
turbed transfer matrix,

M 0ss1us0d = lim
m→`

p
i=0

m−1

fI + sti+1 − tidT0stidg. s39d

As an example of a drift space we know,

T0 = S0 1

0 0
D . s40d

Thus, due to the nilpotency ofT0,

M 0ss1us0d = lim
m→`

FI + o
i=0

m−1

sti+1 − tidS0 1

0 0
DG = S1 s1 − s0

0 1
D ,

s41d

which is the transfer matrix of the drift space of the interval
s1−s0. For another fundamental element, a quadrupole mag-
net, we can show the equivalence of the product representa-
tion (39) with the usual matrix as well. The higher-order
transfer matrices in the momentum deviationd are calculated
in the following subsections.

B. Representation of linear chromaticity

Picking up the linear termsT1ss1d in the infinite product
form of the transfer matrix, Eq.(35) with Eq. (36), we obtain
the first-order one-turn transfer matrixM 1ss0+Lus0d,

M 1ss0 + Lus0d = lim
m→`

o
k=0

m−1

p
i=k+1

m−1

fI + sti+1 − tidT0stidgstk+1 − tkd

3T1stkdp
j=0

k−1

fI + stj+1 − tjdT0stjdg, s42d

which, with the help of Eq.(39), can be casted into the
integral form

M 1ss0 + Lus0d =E
s0

s0+L

ds1M 0ss0 + Lus1dT1ss1dM 0ss1us0d.

s43d

BecauseM 0 has the periodicity of a circumferenceL,

M 0ss1us0d = M 0ss1 + Lus0 + Ld. s44d

The trace ofM 1 is written by that of the product of the
zeroth-order one turn matrixM 0ss1+Lus1d with the first-order
impact matrixT1ss1d,

TrM 1ss0 + Lus0d =E
s0

s0+L

ds1TrfM 0ss1 + Lus1dT1ss1dg.

s45d

Note that the momentum modulation of the phase advance is
represented by the product of the unperturbed transfer matrix
and the first-order impact matrix. As seen in the following,
the higher-order representations of the nonlinear chromatici-
ties are also given by products of the zeroth-order transfer

matrices and the higher-order impact ones. In other words, in
our formulation of the nonlinear chromaticity, higher-order
aberrations of the lattice functions, especially the betatron
function, do not appear. Aberrations of beta function are
omitted in papers[1–3].

Using the first-order representation of the instant transfer
matrix T with respect to the momentum deviation[see Eq.
(19)]

T1ss1d = S 0 0

− G1ss1d 0
D , s46d

whereG1 is the first-order coefficient ofG (20), and

M 0ss1 + Lus1d

= Scosm0 + ass1dsin m0 bss1dsin m0

− gss1dsin m0 cosm0 − ass1dsin m0
D ,

we obtain

TrM 1ss0 + Lus0d = − sin m0E
s0

s0+L

ds1bss1dG1ss1d. s47d

Here, we suppress the suffix 0 of the unperturbed lattice
functions. Then, taking Eqs.(26), (28), and (30) into ac-
count, the first-order phase variation due to the momentum
deviation is given by

m1 =
1

2
E

s0

s0+L

ds1bss1dG1ss1d. s48d

For example, by inserting the explicit expression ofG1 for
horizontal motion,

G1 = sKxh0 − 1dsKx
2 + g0d + g1h0 − sKxh08d8 + 1

2sKxh0d9,

s49d

into Eq. (48) and by partially integrating the resultant repre-
sentation, we find that the linear chromaticityj1;m1/ s2pd is
given by

j1 =
1

4p
E

s0

s0+L

ds1f− bxsKx
2 + g0 − g1h0d − 2axKxh08 + gxKxh0g,

s50d

which is the very formula for the linear chromaticity
[5,7,12]. Here, we have used the well-known defining iden-
tities

ax = − 1
2bx8 s51d

gx = sKx
2 + g0dbx + 1

2bx9. s52d

The expression for the vertical case can be found in Appen-
dix B.

C. Representation of quadratic chromaticity

Next, we calculate the second-order variation of the phase
advancem2 with respect to the momentum deviationd. The
second-order transfer matrix consists of two terms; one is the
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second-order impactT2 of the equation of motion, and the
other is the quadratic product of the first-order impactT1,
i.e.,

M 2ss0 + Lus0d =E
s0

s0+L

ds1M 0ss0 + Lus1dT2ss1dM 0ss1us0d

+E
s0

s0+L

ds2E
s0

s2

ds1M 0ss0 + Lus2dT1ss2d

3M 0ss2us1dT1ss1dM 0ss1us0d.

The trace of the former term can be calculated in a similar
way to the first-order case, so that we have

E
s0

s0+L

ds1TrfM 0ss1 + Lus1dT2ss1dg

= − sin m0E
s0

s0+L

ds1bss1dG2ss1d, s53d

whereG2 is the second-order coefficient ofG (20), whose
explicit form after partial integration is given in Appendix B.
The slightly complex calculation brings the trace of the qua-
dratic product matrix of the first-order impact into the fol-
lowing form:

E
s0

s0+L

ds2E
s0

s2

ds1TrfM 0ss1 + Lus2dT1ss2dM 0ss2us1dT1ss1dg

=
1

2
E

s0

s0+L

ds2E
s0

s2

ds1fcossm0 − 2cus1

s2d − cosm0g
3bss2dG1ss2dbss1dG1ss1d.

The term proportional to cosm0 in the integrand of the above
equation can be easily rewritten as the square of the single
integral,

E
s0

s0+L

ds2E
s0

s2

ds1bss2dG1ss2dbss1dG1ss1d

=
1

2FEs0

s0+L

ds1bss1dG1ss1dG2

,

which, taking Eq.(48) into account, is completely canceled
out by the product of the first-order phase variationm1 in Eq.
(31). We perform the Fourier transformation ofG1 to inte-
grate the term proportional to cossm0−2cus1

s2d. Because

ds1 = bss1ddwss1d s54d

with

wss1d ; E
s0

s1 ds

bssd
, s55d

we find

E
s0

s0+L

ds2E
s0

s2

ds1cosSm0 − 2cUs1

s2Dbss2dG1ss2dbss1dG1ss1d

=E
0

m0

dw2E
0

w2

dw1cossm0 − 2w2 + 2w1d

3b2sw2dG1sw2db2sw1dG1sw1d.

Using the fact thatb2swdG1swd has the periodm0, we expand
it as

b2swdG1swd =
1

2
a1s0d + o

n=1

` Fa1sndcosS2pn

m0
wD

+ b1sndsinS2pn

m0
wDG , s56d

where

a1snd =
2

m0
E

0

m0

dw cosS2pn

m0
wDb2swdG1swd sn = 0,1,2, . . .d,

s57d

b1snd =
2

m0
E

0

m0

dw sinS2pn

m0
wDb2swdG1swd sn = 1,2, . . .d.

s58d

Now, by performing the double integration of the phases as
shown in Appendix D, we have

E
0

m0

dw2E
0

w2

dw1cossm0 − 2w2 + 2w1d

3b2sw2dG1sw2db2sw1dG1sw1d

=sin m0F1

8
m0a1

2s0d + o
n=1

`
m0

3

4sm0
2 − p2n2d

3ha1
2snd + b1

2sndjG .

After all of these calculations are made, the second-order
chromaticityj2;m2/ s2pd is given by

j2 =
1

4p
FE

s0

s0+L

ds1bss1dG2ss1d −
1

16
m0a1

2s0d

− o
n=1

`
m0

3

8sm0
2 − p2n2d

ha1
2snd + b1

2sndjG . s59d

Changing the variables fromw to s again, we have the
integral form of the Fourier componentsa1snd andb1snd as

a1snd =
2

m0
E

s0

s0+L

ds1cosF2pn

m0
wss1dGbss1dG1ss1d

3sn = 0,1,2, . . .d, s60d
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b1snd =
2

m0
E

s0

s0+L

ds1sinF2pn

m0
wss1dGbss1dG1ss1d

3sn = 1,2, . . .d. s61d

The explicit forms ofG2, a1snd, andb1snd are given in Ap-
pendixes B and C, respectively.

D. Representation of cubic chromaticity

The one-turn transfer matrixM 3ss0+L us0d of the third or-
der in d consists of three integrals,

M 3ss0 + Lus0d =E
s0

s0+L

ds1M 0ss0 + Lus1dT3ss1dM 0ss1us0d

+E
s0

s0+L

ds2E
s0

s2

ds1fM 0ss0 + Lus2dT2ss2d

3M 0ss2us1dT1ss1dM 0ss1us0d + sT2 ↔ T1dg

+E
s0

s0+L

ds3E
s0

s3

ds2E
s0

s2

ds1

3M 0ss0 + Lus3dT1ss3dM 0ss3us2dT1ss2d

3M 0ss2us1dT1ss1dM 0ss1us0d,

wheresT2↔T1d denotes the term exchangingT2 for T1 in
the preceding term. In a similar manner to the second-order
case, we can transform the traces of the above matrices into
the following expressions:

E
s0

s0+L

ds1TrfM 0ss1 + Lus1dT3ss1dg

= − sin m0E
s0

s0+L

ds1bss1dG3ss1d,

E
s0

s0+L

ds2E
s0

s2

ds1TrFM 0ss0 + Lus2dT2ss2dM 0Ss2us1dT1ss1dM 0ss1us0d + sT2 ↔ T1dg

=
1

2
E

s0

s0+L

ds2E
s0

s2

ds1fcossm0 − 2cus1

s2d − cosm0Gfbss2dG2ss2dbss1dG1ss1d + sG2 ↔ G1dg,

E
s0

s0+L

ds3E
s0

s3

ds2E
s0

s2

ds1TrFM 0Ss1 + Lus3dT1ss3dM 0ss3us2dT1ss2dM 0ss2us1dT1ss1dg

=
1

4
E

s0

s0+L

ds3E
s0

s3

ds2E
s0

s2

ds1fsinsm0 − 2cus1

s3d − sinsm0 − 2cus2

s3D − sinsm0 − 2cus1

s2D + sin m0

3bss3dG1ss3dbss2dG1ss2dbss1dG1ss1d.

The trace of the product ofT2 andT1, which are the inter-
fering terms of the first- and second-order deviations, is con-
verted into the Fourier series by a similar method used to
obtain the second-order case,

E
s0

s0+L

ds2E
s0

s2

ds1TrFM 0ss0 + Lus2dT2ss2dM 0ss2us1dT1ss1d

3M 0ss1us0d + sT2 ↔ T1dg

= sin m0F1

8
m0a2s0da1s0d + o

n=1

`
m0

3

4sm0
2 − p2n2d

ha2snda1snd

+ b2sndb1sndjG −
1

2
cosm0FE

s0

s0+L

dsbssdG2ssdG
3FE

s0

s0+L

dsbssdG1ssdG . s62d

Here, a2 and b2 are the Fourier components ofbssdG2ssd.
The term proportional to cosm0 corresponds to the part of
the cross term ofm2 and m1 in the third-order expression
(32).

The integration of the term proportional to sinm0 in the
triple product ofG1, the triple coupling between the first-
order deviations, can be easily casted into the cubic product
of the integral of the single integral:

E
s0

s0+L

ds3E
s0

s3

ds2E
s0

s2

ds1bss3dG1ss3dbss2dG1ss2dbss1dG1ss1d

=
1

6FEs0

s0+L

ds1bss1dG1ss1dG3

, s63d

which is canceled out with the cubic product of the first-
order chromaticitym1 in Eq. (32). The other terms of the
triple product ofG1 can be transformed into the Fourier se-
ries by means of the formula given in Appendix D:
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1

4
E

s0

s0+L

ds3E
s0

s3

ds2E
s0

s2

ds1fsinsm0 − 2cus1

s3d − sinsm0 − 2cus2

s3 − sinsm0 − 2cus1

s23bss3dG1ss3dbss2dG1ss2dbss1dG1ss1d

=
1

8
m0

2cosm0a1s0dF1

8
a1

2s0d + o
n=1

`
m0

2

4sm0
2 − p2n2d

ha1
2snd + b1

2sndjG −
1

64
sin m0Fm0a1

3s0d + 2o
n=1

`
m0

3s3m0
2 − p2n2d

sm0
2 − p2n2d2 a1s0dha1

2snd

+ b1
2sndj + 2 o

n,m=1

`
m0

5h3m0
2 − p2sn2 + nm+ m2dj

sm0
2 − p2n2dsm0

2 − p2m2dhm0
2 − p2sn + md2j

3ha1sn + mda1snda1smd − a1sn + mdb1sndb1smd+ b1sn

+ mda1sndb1smd + b1sn + mdb1snda1smdjG .

The terms proportional to cosm0 in the right-hand side of the above equation together with that in Eq.(62) result in the product
of m2 andm1 in Eq. (32).

Combining the above results, we find the Fourier representation of the third-order chromaticityj3;m3/ s2pd:

j3 =
1

4p
FE

s0

s0+L

ds1bss1dG3ss1d −
m0

8
a2s0da1s0d − o

n=1

`
m0

3

4sm0
2 − p2n2d

ha2snda1snd + b2sndb1sndj +
m0

64
a1

3s0d

+ o
n=1

`
m0

3s3m0
2 − p2n2d

32sm0
2 − p2n2d2 a1s0dha1

2snd + b1
2sndj + o

n,m=1

`
m0

5h3m0
2 − p2sn2 + nm+ m2dj

32sm0
2 − p2n2dsm0

2 − p2m2dhm0
2 − p2sn + md2j

3ha1sn + mda1snda1smd − a1sn + mdb1sndb1smd + b1sn + mda1sndb1smd + b1sn + mdb1snda1smdjG . s64d

The explicit forms ofG3, a2snd, andb2snd as well asa1snd
andb1snd are given in Appendixes B and C, respectively. It
should be emphasized that the terms proportional to cosm0
in the derivation of the cubic chromaticity, i.e., the product of
the linear and the square charomaticities, are completely can-
celed out.

III. NUMERICAL CALCULATION

Now, we apply our formula of nonlinear chromaticity to
the SPring-8 storage ring. By comparing the numerical re-
sults with the measurements, we can determine the validity
of the formulation.

The energy of electrons circulating in the SPring-8 stor-
age ring is 8 GeV, and the circumference was about 1436 m.
The original lattice of the ring is composed of 48 unit cells of
a double bend achromat. Four of the 48 cells lack bending
magnets for the purpose of installing long straight sections of
30 m. In the early years of the operation of the storage ring,
the quadrupole magnets in the straight cells were used to
keep the 48-fold symmetry of the optics. The strong sextu-
pole magnets are installed to cancel the chromatic effect and
the nonlinearity of the optics is considerably strong.

Until now, the SPring-8 storage ring has mainly operated
in three different optic configurations. One is the so called
hybrid optics, whose horizontal beta function, at the disper-
sion free straight sections, takes high and low values alter-
nately. The optics functions, i.e., the horizontal and vertical
betatron function and the horizontal dispersion function, in

the four normal cells are shown in Fig. 1. The solid(dashed)
line indicates the horizontal(vertical) beta function and the
dotted one the horizontal dispersion function. The left ordi-
nate expresses the scale of the beta functions, and the right
one corresponds to the dispersion function. The boxes at a
bottom express magnets, the highest ones of which corre-
spond to the quadrupole, the lowest to the bending, and the
remainder to the sextupole magnets, respectively. The hybrid
optics were used from March 1997, when the SPring-8 stor-
age ring commissioning began, to July 1999. In September
1999 the second one, called the HHLV optics, whose hori-
zontal and vertical beta functions take high and low values at
all the dispersion-free straight sections, respectively, went

FIG. 1. Configuration of hybrid optics.
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into service to use the insertion devices more effectively.
Figure 2 indicates the optic functions of the HHLV. In the
summer shut down of 2000, we reconstructed the storage
ring, i.e., we removed the focusing magnets in the four
straight cells to introduce 30-m-long magnet-free sections.
We abbreviated the new optics as LSS, whose optics func-
tions are shown in Fig. 3. Typical values of the betatron tunes
and the linear chromaticities are listed in Table I.

We calculated the higher-order chromaticity of these three
optics and compared the numerical results with the measure-
ments at the SPring-8 storage ring. Figure 4 shows the mea-
sured and calculated betatron tunes of the hybrid optics as a
function of the fractional momentum deviation. The circles
are the measured horizontal tunes and the squares the verti-
cal, respectively. The calculated horizontal(vertical) tunes
are represented by the thick(thin) lines. In Fig. 4 the dotted
lines denote the calculated tunes including only the linear
chromaticities, and the dashed lines correspond to the
second-order calculations. The calculated tunes including up
to the third order are represented by the solid lines. The left
(right) ordinate expresses the scale of the horizontal(verti-
cal) tune.

The calculation of each element of the lattice, including
the sextupole magnets, is divided into 200 pieces. We
summed the harmonics of a Fourier series up to 15000, for
which the series almost converged as can be seen in Fig. 5.
The thick lines denote the horizontal chromaticities, and the
thin ones represent those of the vertical. The solid lines in-
dicate the second-order chromaticities, and the dotted lines
correspond to the third. The left(right) ordinate expresses the
scale of the second-(third-) order chromaticity. The thick-
ness of a sextupole magnet is very important for ensuring the
convergence. The higher the order of the harmonics be-
comes, the more times the Fourier component oscillates in
magnetic elements. Hence for higher harmonics, the contri-
butions of the pieces in an element cancel each other out so
that the Fourier series converges.

The range of the momentum deviation of the hybrid op-
tics, where we can store the beam with enough lifetime to
measure the betatron tune, ranges only from −0.8% to
+1.2%. One finds that even in such a narrow range of mo-
mentum deviation, the nonlinearity significantly affects on
the chromaticity. But in this example with narrow momen-
tum acceptance, one cannot find the difference between the
second- and third-order perturbative approximations.

The optics change from the hybrid to the HHLV enlarged
the momentum range drastically. The measured and calcu-
lated tunes of the HHLV are shown in Fig. 6. One can see in
Fig. 6 that proportional to the increase in the order, the cal-
culated tunes approach the measured values. The increase of

TABLE I. List of linear optics parameters.

Optics nx ny j1x j1y

Hybrid 51.231 16.310 1.63 0.70

HHLV 43.159 21.358 7.06 4.09

LSS 40.199 18.350 7.18 6.37

FIG. 2. Configuration of HHLV optics.

FIG. 3. Horizontal and vertical beta functions and horizontal
dispersion function of LSS optics over five cells including magnet-
free section.

FIG. 4. Betatron tunes of hybrid optics as a function of momen-
tum deviation.
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the momentum acceptance of the HHLV optics at the nega-
tive momentum deviation reaches about three times that of
the hybrid. We consider the cause of the expansion of the
momentum acceptance to be attributed to the sign of the
second order of the horizontal chromaticity. In the HHLV
optics, a particle with a large momentum deviation keeps
away from an integer resonance line. However, in the hybrid,
it approaches the line.

As a final illustration, Fig. 7 displays the tunes of the LSS
optics. Comparing Fig. 7 with Fig. 6, we find that the non-
linearity of the LSS optics is stronger than that of the HHLV
optics. Due to the stronger nonlinearity, the momentum ac-
ceptance of the LSS optics seems to become narrower than
the HHLV.

IV. SUMMARY AND CONCLUSIONS

We derived the perturbative formula for the higher-order
terms of nonlinear chromaticity of a circular accelerator up

to the third order. We established a canonical equation of an
off-momentum particle motion based on the full order
Hamiltonian with respect to momentum deviation. Using a
transfer matrix formulation derived from the equations, we
gave a perturbative representation of the nonlinear chroma-
ticity, which looks like a Feynman integral. In the formula-
tion, we found that the Fourier expansion with respect to the
lattice periodicity has great effectiveness in extracting the
higher-order formula of the nonlinear chromaticity from the
transfer matrices. As an example, we calculated the nonlinear
chromaticities of the SPring-8 storage ring with three differ-
ent optics, whose numerical results agree fairly well with the
measurements.

As found in the SPring-8 storage ring, the momentum
acceptance is very sensitive to the higher-order nonlinearity
of the chromaticity. Higher-order terms of the nonlinear
chromaticity are thus indispensable for the dynamics of a
particle motion with a large momentum deviation.
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APPENDIX A: EXPANSION OF INFINITESIMAL
TRANSFORMATION

Here, we give the explicit representation of the expansion
of the contact transformationTzssdsz=x,yd with respect to
the momentum deviationd.

(1) Zeroth order. For horizontal motion,

Ax,0 = 0,

Bx,0 = 1,

FIG. 5. Convergence of Fourier series of nonlinear chromaticity
of hybrid optics on the number of the summation.

FIG. 6. Betatron tunes of HHLV optics as a function of momen-
tum deviation.

FIG. 7. Betatron tunes of LSS optics as a function of momentum
deviation.
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Cx,0 = Kx
2 + g0.

For vertical motion,

By,0 = 1,

Cy,0 = − g0.

(2) First order.

Ax,1 = Kxh08,

Bx,1 = − 1 +Kxh0,

Cx,1 = g1h0,

By,1 = − 1 +Kxh0,

Cy,1 = − g1h0.

(3) Second order.

Ax,2 = Kxh18 − Kx
2h0h08,

Bx,2 = 1 −Kxsh0 − h1d + 3
2h08

2

Cx,2 = 1
2g2h0

2 + g1h1,

By,2 = 1 −Kxsh0 − h1d + 1
2h08

2,

Cy,2 = −
1

2
g2h0

2 − g1h1.

(4) Third order.

Ax,3 = Kxh28 − Kx
2sh1h08 + h18h0d + Kx

3h0
2h08,

Bx,3 = − 1 +Kxsh0 − h1 + h2d − 3
2Kxh0h08

2 + 3h18h08 − 3
2h08

2,

Cx,3 = 1
6g3h0

3 + g2h1h0 + g1h2,

By,3 = − 1 +Kxsh0 − h1 + h2d − 1
2Kxh0h08

2 + h18h08 − 1
2h08

2,

Cy,3 = − 1
6g3h0

3 − g2h1h0 − g1h2.

APPENDIX B: HIGHER-ORDER FORMULA FOR SIMPLE
CHROMATIC CONTRIBUTION

In this appendix we give the higher-order forms of the
integrandGz after performing partial integration,

E
s0

s0+L

ds1bzss1dGzss1d =E
s0

s0+L

ds1Ĝzss1d. sB1d

(1) First order.

Ĝx,1 = − bxsKx
2 + g0 − g1h0d − 2axKxh08 + gxKxh0, sB2d

Ĝy,1 = bysg0 − g1h0d + gyKxh0. sB3d

(2) Second order.

Ĝx,2 = bxfKx
2s1 − 1

4h08
2d − Kx

3h0 + 1
2Kx

4h0
2 + g0

− g1sh0 − h1d + 1
2g2h0

2g− 2axsKxh18 − Kx
2h0h08d

+ gxsKxh1 − 1
2Kx

2h0
2 + 3

2h0
2d sB4d

Ĝy,2 = − byf 1
4Kx

2h08
2 + g0 − g1sh0 − h1d + 1

2g2h0
2g

+ gysKxh1 − 1
2Kx

2h0
2 + 1

2h08
2d . sB5d

(3) Third order.

Ĝx,3 = − bxfKx
2s1 + 1

2h08h18d − Kx
3hh0s1 + 1

2h08
2d − h1j

− Kx
4h0h1+

1
3Kx

5h0
3 + g0s1 + 3

2h08
2d − g1hh0s1

+ 3
2h08

2dh1 + h2j + g2s 1
2h0

2 − h0h1d − 1
6g3h0

3d
− 2axfKxh28 − Kx

2sh08h1 + h0h18d + Kx
3h0

2h08g

+ gxfKxsh2 − 3h0h08
2d − Kx

2h0h1 + 1
3Kx

3h0
3 + 3h08h18g ,

sB6d

Ĝy,3 = byf− 1
2Kx

2sh08
2 + h08h18d + Kx

3h0h08
2 + g0s1 + 1

2h08
2d

− g1hh0s1 + 1
2h08

2d − h1 + h2j + g2s 1
2h0

2 − h0h1d
− 1

6g3h0
3g

+ gyfKxsh2 − h0h08
2d − Kx

2h0h1 + 1
3Kx

3h0
3 + h08h18g .

sB7d

APPENDIX C: HIGHER-ORDER FORMULA FOR
FOURIER COMPONENTS OF G

In this appendix we give the higher-order forms of the
Fourier components ofGz,m after performing partial integra-
tion,

az,msnd =
2

mz,0
E

s0

s0+L

ds1cosF2pn

mx,0
wzss1dGbzss1dGz,mss1d,

sC1d

bz,msnd =
2

mz,0
E

s0

s0+L

ds1sinF2pn

mz,0
wzss1dGbzss1dGz,mss1d.

sC2d

(1) First order. After performing the partial integration,
we have the explicit forms of the above integrals,
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ax,1snd
bx,1snd

=
2

mx,0
E

s0

s0+L

ds1FHĜx,1

−
1

2bx
S2pn

mx,0
D2

Kxh0Jcos

sin
H2pn

mx,0
wxss1dJ

±
2pn

mx,0
Sax

bx
Kxh0 − Kxh08Dsin

cos
H2pn

mx,0
wxss1dJG

sC3d

and

ay,1snd
by,1snd

=
2

my,0
E

s0

s0+L

ds1FHĜy,1

−
1

2by
S2pn

my,0
D2

Kxh0Jcos

sin
H2pn

my,0
wyss1dJ

±
2pn

my,0

ay

by
Kxh0

sin

cos
H2pn

my,0
wyss1dJG . sC4d

(2) Second order.

ax,2snd
bx,2snd

=
2

mx,0
E

s0

s0+L

ds1FHĜx,2 −
1

2bx
S2pn

mx,0
D2

3SKxh1 −
1

2
Kx

2h0
2 +

3

2
h08

2DJ
3

cos

sin
H2pn

mx,0
wxss1dJ±

2pn

mx,0
Hax

bx
SKxh1 −

1

2
Kx

2h0
2

+
3

2
h08

2D − Kxh18 + Kx
2h0h08Jsin

cos
H2pn

mx,0
wxss1dJG

sC5d

and

ay,2snd
by,2snd

=
2

my,0
E

s0

s0+L

ds1FHĜy,2 −
1

2by
S2pn

my,0
D2

3SKxh1 −
1

2
Kx

2h0
2 +

1

2
h08

2DJ
3

cos

sin
H2pn

my,0
wyss1dJ ±

2pn

my,0

ay

by
SKxh1 −

1

2
Kx

2h0
2

+
1

2
h08

2Dsin

cos
H2pn

my,0
wyss1dJG . sC6d

APPENDIX D: CALCULATION OF FOURIER
TRANSFORM

Here we use the complex Fourier transformation,

b2swdG1swd = o
n=−`

`

fsnde2pinw/m0, sD1d

where fsnd=fasnd− ibsndg /2.
At first, we review the calculation of the double integral

appearing in the second-order chromaticity,

E
0

m0

dw2E
0

w2

dw1cossm0 − 2w2 + 2w1db2sw2d

3G1sw2db2sw1dG1sw1d

;ReFE
0

m0

dw2E
0

w2

dw1e
ism0−2w2+2w1db2sw2d

3G1sw2db2sw1dG1sw1dG
=ReF o

n,m=−`

`
m0

2

2ism0 + pmdSeim0dn+m,0

−
sin m0

m0 − pn
D fsndfsmdG .

The second term of the above equation is pure imaginary,

1

2i
m0

2 sin m0 o
n,m=−`

`
fsnd

m0 − pn

fsmd
m0 + pm

=
1

2i
m0

2 sin m0U o
n=−`

`
fsnd

sm0 − pndU2

,

so that it has no contribution to the integral. Here we have
used the defining identityfs−nd= fpsnd with the symbolp
denoting the complex conjugate. Using the same identity, we
can rewrite the first term as

E
0

m0

dw2E
0

w2

dw1cossm0 − 2w2 + 2w1d

3b2sw2dG1sw2db2sw1dG1sw1d

=sin m0 o
n=−`

`
m0

2

2sm0 − pnd
ufsndu2

=sin m0F1

8
m0a1

2s0d + o
n=1

`
m0

3

4sm0
2 − p2n2d

ha1
2snd + b1

2sndjG .

Next we calculate the triple integrals in the third-order chro-
maticity, each of which, after the integration, becomes, re-
spectively,

E
0

m0

dw3E
0

w3

dw2E
0

w2

dw1sinsm0 − 2w3 + 2w1d

3b2sw3dG1sw3db2sw2dG1sw2db2sw1dG1sw1d

=ImF o
n,m,,=−`

`

eim0
m0

2isp, + m0d H m0
2

2ifm0 + psm+ ,dg

3dn+m+,,0 −
m0

2

2ispn − m0d
e−2im0dm,0

− S m0

2ifm0 + psm+ ,dg
+

m0

2ifm0 − psn + mdgD
3

m0

2ispn − m0d
se−2im0 − 1dJ fsndfsmdfs,dD ,
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E
0

m0

dw3E
0

w3

dw2E
0

w2

dw1sinsm0 − 2w3 + 2w2d

3b2sw3dG1sw3db2sw2dG1sw2db2sw1dG1sw1d

=ImS o
n,m,,=−`

`

eim0H−
m0

2ifpsm+ ,d + m0g
m0

2ispm+ m0d

3Fm0dn+m+,,0 −
m0

2ispn − m0d
se−2im0 − 1dG

+
m0

2pi,

m0

2ispm+ m0d
sm0dn+m+,,0 − m0dn+m,0d

+
m0

2ispm+ m0dF m0

2pisn + md
m0 +

m0
2

2
dn+m,0Gd,,0J

3fsndfsmdfs,dD ,

E
0

m0

dw3E
0

w3

dw2E
0

w2

dw1sinsm0 − 2w2 + 2w1d

3b2sw3dG1sw3db2sw2dG1sw2db2sw1dG1sw1d

=ImS o
n,m,,=−`

`

eim0
m0

2isp, + m0dH m0

2ipsm+ ,d

3sm0dn+m+,,0 − m0dn,0d + S m0
2

2pin
+

m0
2

2
dn,0Ddm+,,0

−
m0

2ispm− m0dF m0

2iphsn + md − m0j

3se−2im0 − 1d − m0dn,0GJ fsndfsmdfs,dD .

Collecting the above integrals, we have

E
0

m0

dw3E
0

w3

dw2E
0

w2

dw1fsinsm0 − 2w3 + 2w1d

− sinsm0 − 2w3 + 2w2d − sinsm0 − 2w2 + 2w1dg

3b2sw3dG1sw3db2sw2dG1sw2db2sw1dG1sw1d

=
1

2
m0

2cosm0a1s0dF1

8
a1

2s0d + o
n=1

`
m0

2

4sm0
2 − p2n2d

3ha1
2snd + b1

2sndjG−
1

16
sin m0Fm0a1

3s0d

+ 2o
n=1

`
m0

3s3m0
2 − p2n2d

sm0
2 − p2n2d2 a1s0dha1

2snd + b1
2sndj

+ 2 o
n,m=1

`
m0

5h3m0
2 − p2sn2 + nm+ m2dj

sm0
2 − p2n2dsm0

2 − p2m2dhm0
2 − p2sn + md2j

3ha1snda1smda1sn + md + a1sndb1smdb1sn + md

+ b1snda1smdb1sn + md − b1sndb1smda1sn + mdjG
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