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Perturbative formulation for nonlinear chromaticity of circular accelerators
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The nonlinear chromaticity plays an important part in the dynamics of a particle at far off-momentum in a
strong focusing circular accelerator. We derived the exact perturbative formula of the nonlinear dispersion
function of a ring accelerator and gave explicit expressions of higher-order terms. Using the perturbative
formula for the dispersion function, we derived the higher-order expressions for the nonlinear chromaticity up
to the third order. We numerically estimated the nonlinear chromaticity of the SPring-8 storage ring, and it
showed fairly good agreement with the measurement.
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I. INTRODUCTION bative formula of the nonlinear chromaticity. In Sec. Ill, we

A high-energy storage ring dedicated to a high-briIIiancenume”Ca"y estlmz_ite the nonllnear_ chromatlcny (_)f the
light source can be characterized by low emittance. The ringFring-8 storage ring and compare it with an experimental
optics needs a strong focusing force to achieve this low emjtmeasurement.
tance. Hence, to correct the large chromaticity of the storage
ring, one must install strong sextupole magnets, which inevi- || FORMULATION OF NORLINEAR CHROMATICITY
tably enhance the nonlinearity of the optics. However, the
beam lifetime is another important figure of merit of a high- A. Preliminary
brilliance light source. A larger momentum acceptance is |, this paper, we assume the following properties for the
then necessary to achieve a longer beam lifetime. To enlarg@Pmposing maénets
the momentum acceptance, one has to know the dynamics o0 (1) There is no vértical curvature
a particle with large momentum deviation, where the nonlin- (2) There is no skew magnetic elément
earity of the optics is very strong. We should know the non- (3) All magnets have separate functions.

linear behavior of the chromaticity because the chromaticity (4) All magnets are approximated to have a hard edge
plays an important role in determining the momentum aCCePrhe HamiltoniarH, which describes the motion of a particlé

tance. . o
To the best of our knowledgl—8|, no exact formula of In such a ring, is given by9,10)
the higher-order terms of the nonlinear chromaticity is avail- H(X,PoY, Py, S) = = [1 + Ko (9)X]V(1 + 8)% - p? - p§

able. This is partly because we did not have a precise for-
mula to calculate the higher-order dispersion function, which
was recently derived in our previous pap@}. Although the
recipe to compute the higher-order dispersion function recur- [n/2]+1

rently is given in Ref[1], an explicit formula higher than the +S (9 S ()

second order cannot be found. We derived the complete per- =0 (n+2)! 5o

turbative formula for the higher-order dispersion function to

the fourth order and determined its validity by comparing the « (” + Z)Xn+2—2my2m (1)
numerical estimation with the measurement at the SPring-8 m '

storage rind9]. Furthermore, in some of the aforementioned
research[1-3], the higher-order modulations of the optics

+ LK

whereé is the fractional deviation of the momentum,

functions due to the energy deviation were not correctly P-Po
taken into account. Thus, the higher-order terms were calcu- o=—, 2
lated inconsistently. The purpose of this paper is to derive a Po

precise perturbative formula for the higher-order terms ofwith the nominal momentunp, and s is the path length
nonlinear chromaticity. We establish the higher-order for-along the reference orbit. In additioK, is the horizontal
mula by reexamining the transfer matrix formulation for acurvature andy,’s are the strengths of multipole magnets,
particle dynamics with off-energy. respectively. Furthermore, we used standard mathematical
In Sec. Il, after a brief explanation for the formulation of notations, such as the Gauss sympdland the binomial
particle dynamics in a ring accelerator, we derive the perturcoefficient(:). Note that the momentp, , are normalized by

the nominal momenturpy,.
The presence of the linear term with respect tn Eq. (1)

*Electronic address: takao@spring8.or.jp implies that with nonzerad, the trivial solutionx=0 can
"Permanent address: The Japan Research Inst. Ltd., Osaka 54®ver satisfy the equation of horizontal motion derived from
0081, Japan. the Hamiltonian. A dispersion function is introduced to ex-
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tract the closed orbit for an off-momentum particle. The full dly y
order nonlinear solutions of the off-momentum trajectory as\p =Ty o)’ (13
x(s) and the conjugate momentup)(s) satisfy y Y
, P, where
XE:(1+KXX€)ﬁ, (3
V(1 +9)°-pg
KxPe (1+8)*(1+Kxo)
+ / 2_ 2 2_ 27302
P, = KJV(1+ 82— p2 - 1] - K%~ >, (nf—“l)lxg L (a) N L L ki
n=0 : g KxP
—K2- E _an; —— xFe
These can be solved by the perturbative expansion — V(1+6)2-p2
X9 = 78 = 53 (), (5) _ ( A Bi(S) ) (14
n=0 -C,(s) —Al9
(9= 0(9) = 52 8'y(9). (6)
p /4 = en 1+Kx,
/ 2_ 2
The explicit expressions of the higher-order terms of the dis- T (s) = VA +8)7-p = ( 0 By(s))
persion function up to the fourth order are given in Réf. Y > %xn -Cys) 0
In the following, we consider the linear motion of the one 0
betatron oscillation around the off-momentum trajectory
[x(s),p.(s)]. To shift the origin of phase space(tq,p,), we (15
perform a canonical transformation frofr, p,) to (XB,DXB).
which is generated by After performing the transformation
Fa(X,Pxy8) = [X = X1y, + Pe(S)]- () —
z z
The generating functioer(x,pr,s) yields the transforma- ( Z) B UZ(S)<¢Z> (16)
tion equations
X=Xg+X(9), (8) 12 0
U,(s) = ( ~1/2(1 —21 ' —1/2)* 17
Py = pr +ps), (9 B, (EBZ B, - AZ) B,
and for z=x,y, respectively, we have “Hill's equation”
JF,
Hﬂ =H+ E, (10) d(z 7
as\ps =TA9) . (18
where the identity transformations fgrand p, have been z z
suppressed. Then, up to the second ordexQry, Py and _
py, the HamiltonianH ; is given by with
1+K(9%(9) [ 1+9”
Hs(Xs,Px ., Y, Py, S) = 0 1
APy S = [ o= o) | (107 (o) 9= (— G.9) o) | o
z

2|, Kdopds)
py] L+ or-ge

+ %Ki(S)é + %(nﬁo g;—(!S)XQ(S)>

+
G/9 =B,C,-A,+3(nB)" -[A,-%(nB) . (20

According to the standard manner of Hill's equation, we can
construct the transfer matriM«s;|s),

X (X5 =Y?). (11)
The equations of motion obtained from the above Hamil- (?) '
tonian are =Mz ( ( ) , (21
)|, =M si%o){ .
d( s Xg
d_ :Tx(s) (12 ) )
S\Px, Px, which can be represented by the Twiss parameterdHs
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M(sy|so)
Bs) St . S [ate) afe)ai sy
e LC0S A * afsosin 4 VBAs) BAso)sin v
z
= (22
asy) — sy s ltafdseds) B£So) 5 .
- ————C0S - —F——=195In cos — axsy)sin
i T Trepis T e ey o0 o v
[
with the betatron phase M (sp+ L|Sp) = > "M (So+ L|so)- (33)
wi=[ 2 @3 "
s B9
Then, the one turn transfer matrix tis given by Comparing Eqs(28) and(23), we can ob_taln the represen-
) tation of y,, in terms of the transfer matrices,
MAso+Liso
COS uz+ axSp)Sin uz )Sin uz
:( pat S 7“1 ﬂf(so g ) Xn=3Tr My(So+ Lso). (34)
= yASo)sin w7 COS 7= a{Sp)Sin uz
(24) Now, we derive the explicit representations of the higher-

order transfer matriced ,(s,+L|sy) in terms of the pertur-
whereL is the circumference of the ring. Here, we have usecbative expansion of the impact matrix(s). Dividing the
the periodicity of the Twiss parameters and defined the phasgistance betwees, ands; (s; > s) into an infinite number of

advance over the circumference infinitesimal ones, we can write the transfer matrix as the
st gs infinite product of the infinitesimal ones,
Mr= . (25)
o B9
m-1
From Eg.(24), one can relate the tung= u,/(2m) to the L
transfer matrix as M (s1ls0) = rL'ng M (tia]t) (35)

COS 7= C0S 2mrz= 3Tr MSy+ L|sp). (26)

Now, we perturbatively calculate the nonlinear chromatic-with t;=s,+[(s,~so)/mli. From Eq.(18), the transfer matrix

ity based on the defining equation of the tu@é) [7]. Here-  corresponding to the infinitesimal interval is given by
after, for simplicity, we omit the suffix denoting the coordi-

nates such as,y if they are not necessary. The expansion of
the phase advangewith respect to the momentum deviation

S M (tisalt) =1 + (tg — ) T (1), (36)
=2 8w, (27) S ,
n=0 wherel is the identity matrix,
gives
cosu=_2, Mxn 28 10
M go Xn (28) | = ( ) . (37)
01
where
Xo= COS ko, (29) ExpandingT in terms of 6,
X1= = 1SN uo, (30)
X2 = = 12Sin ug = 3u2c0S ug, (31) T(s) = go "Tn(9), (38)
X3=~ (Ma - %Mi)sm Mo~ MoM1COS o, (32
and so on. The transfer matriM is also expanded with and gathering the terms order by order in the matrix product
respect tod as (35), we can derive the perturbative expansion of the transfer
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matrix M(s,|sp). At the zeroth order, we have the unper- matrices and the higher-order impact ones. In other words, in
turbed transfer matrix, our formulation of the nonlinear chromaticity, higher-order
aberrations of the lattice functions, especially the betatron
e function, do not appear. Aberrations of beta function are
Mo(salso) = lim [T [1 + (s = ) To(t)]. (B9 omitted in paper$1-3).

m—oe i=0 R . . .
' Using the first-order representation of the instant transfer

m-1

As an example of a drift space we know, matrix T with respect to the momentum deviatipsee Eq.
0 1 (19)]
T= 56 o) (46)
Thus, due to the nilpotency df,, 15
me1 whereG; is the first-order coefficient o& (20), and
o 01 B 1 s—-%
Mo(siiso) = im | 143 a=t) g o) 1= ™ 7). Mo(sy +Llsy
(41) _ (COSMO +a(sysinug  B(sysin ug )
—y(sYsinpmg  COSpo— a(sysin uo/’

which is the transfer matrix of the drift space of the interval _
s;—S. For another fundamental element, a quadrupole magve obtain
net, we can show the equivalence of the product representa- st

tion (39 with the usual matrix as well. The higher-order TrM 4(so + L|so) :‘Sinﬂof ds,B(s))Gy(s). (47)
transfer matrices in the momentum deviatidare calculated S

in the following subsections. . .
! wing su I Here, we suppress the suffix 0 of the unperturbed lattice
functions. Then, taking Eqg26), (28), and (30) into ac-
B. Representation of linear chromaticity count, the first-order phase variation due to the momentum

Picking up the linear term$4(s;) in the infinite product deviation is given by

form of the transfer matrix, Eq35) with Eq. (36), we obtain 1 (ot
the first-order one-turn transfer matmik,(sy+L|sp), H=3 f ds;8(s1)Ga(s). (48)
m-1 m-1 %
— i 4t : _ For example, by inserting the explicit expressionGf for
M +L|sp) = lim |+ (t ) To(t)1(t t
1(So+ L[so) m_mg) i:lgl[ (Ge1 =) To(t) 1 (tksr — 1) horizontal motion,
k-1 2 Yt "
Gy = (Kymo = (K + o) + 9170 = (Kymp)" + 5(Kymo)”,
Ty L1 [+ (g~ 1) Tolt)], (42) ’ 49)
j=0
which, with the help of Eq(39), can be casted into the INto Eq.(48) and by partially integrating the resultant repre-
integral form sentation, we find that the linear chromaticity= 1/ (27) is
given by
Sotl
Ma(so + Lso) = ds;Mo(Sp + L[s) Ta(s)Mo(sy[sp).- 1 (o ) ,
S0 &= ET ds[- ,Bx(Kx +0o— 0170 — 2a,Kymo + YKyl
(43) % 50
BecauseM ; has the periodicity of a circumferente
which is the very formula for the linear chromaticity
Mo(S1/So) =My + L|sp+L). (44)  [5,7,12. Here, we have used the well-known defining iden-

The trace ofM, is written by that of the product of the tities
_zeroth-order_ one turn matriM o(s; +L|s;) with the first-order a,= - % 4 (51)
impact matrixT 4(s,),
ot %= (KE+ 90) B+ 3B (52)
TMy(So+Lis))= | dsTrIMo(s; +LIs)Ta(sp]. _ o ” ,
% The expression for the vertical case can be found in Appen-

Note that the momentum modulation of the phase advance is
represented by the product of the unperturbed transfer matrix
and the first-order impact matrix. As seen in the following, Next, we calculate the second-order variation of the phase
the higher-order representations of the nonlinear chromaticiadvanceu, with respect to the momentum deviationThe

ties are also given by products of the zeroth-order transfesecond-order transfer matrix consists of two terms; one is the

C. Representation of quadratic chromaticity
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other is the quadratic product of the first-order impagt

second-order impact, of the equation of motion, and the Stk $
f dszf ds;coq wo— 24
ie.,

25)3(52)61(82)3(31)&(81)

2] (%)
Sotl = f de, f de1cog o = 295 + 2¢04)
M (so+ L|sp) = ds;Mg(Sp + L|sp) T 2(S1) M o(S1/S0) 0 0

X B @2)G1(p0) BA(01) Gy 1) .

sotL s
+ f dsef ds;Mo(Sp + L[sp) Ta(sy) Using the fact tha(¢)G;(¢) has the periogk,, we expand
it as
XM (SIS T1(S)Mo(S1]50)- )
5 1 21
The trace of the former term can be calculated in a similar BH¢)Gale) = 531(0) +> | ay(n)cog —¢
way to the first-order case, so that we have n=1 Ho
2
ol * bl(n)sin(i”qpﬂ , (56)
f ds;Tr[Mg(s; + L[s) T(sy)] Mo
% where
So+L
==sin Mof ds18(s1)Ga(s1), (53) 2 (Ho 2m |\
% ay(n) =—J de cod —¢ |BA(e)Gi(¢) (n=0,1,2,..),
MoJo Mo

where G, is the second-order coefficient & (20), whose (57)
explicit form after partial integration is given in Appendix B.
The slightly complex calculation brings the trace of the qua-
dratic product matrix of the first-order impact into the fol-
lowing form:

Mo 7!

by(n) = = f de sin(ﬂcp)ﬁzw)csl(@) (n=1,2,..).
MoJo M0

(59)

o+l S
f ds, f ds;TrIM(s; + LIs) T1(S)Mo(S,[sp) Ta(S1)] _ _ _
S S Now, by performing the double integration of the phases as

shown in Appendix D, we have

1 (ot S
:Ef dszf dsl[cos(,uo - 2¢|§21) - cos,uo] » o
N K f dez f d1Cos g~ 205 + 2¢1)
0 0

X B($2)Ga(s2) B(s1)Ga(sy).
2 2
The term proportional to cog, in the integrand of the above XB2)Gale2)B ((Pl)Gl((Pl)
equation can be easily rewritten as the square of the single E ud
i =sin as(0 — 5 5o
integral, Mo Mo 20) + 2 4R D)
sotl $2
LO dszfso ds18(s2)G1(s2) B(s1) Ga(s1) x{a2(n) + bi(n)}] )
1 So+L 2
=3 J ds; B(s)Gi(s1) | After all of these calculations are made, the second-order
So chromaticity &= u,/(2m) is given by
which, taking Eq.(48) into account, is completely canceled 1 sotl 1
out by the product of the first-order phase variatignn Eq. &H=— f ds;8(s1)Gy(sy) — —u0a1(0)
(31). We perform the Fourier transformation G to inte- 4| Js, 16
grate the term proportional to c(qa)—2¢|§i). Because 2
Z 5 7,2 —————{aj(n) +b (n)}] (59
ds; = B(sp)de(sy) (54) w1 8(ug )
with Changing the variables fromp to s again, we have the
integral form of the Fourier componendg(n) andb;(n) as
% ds +L
— Bl 2 (% 2mn
els) f s BO) (59 ay(n)=— f d&COS{—go(sl)}B(sl)Gl(sl)
Mo So Mo
we find X(n=0,1,2,..), (60)
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2 (%t 2
by(n) =— f dslsin[ cm <p(sl)}ﬁ(sl)G1(sl)
Mo So %)

X(n=1,2,..). (61)

The explicit forms ofG,, a;(n), andb;(n) are given in Ap-
pendixes B and C, respectively.
D. Representation of cubic chromaticity

The one-turn transfer matrid 5(sy+L|sp) of the third or-
der in § consists of three integrals,

Sotl

M3(sp+ L|sp) = f ds;Mo(Sp + L[S T3(Sp)M o(S1/Sp)

So
Sotl S

+ f ds, f dsi[Mo(so+ LIy T ()
% %

XM o(Spls) T 1(Sp)Mo(Sy]Sp) + (T = T4)]

PHYSICAL REVIEW E 70, 016501(2004

Sotl 3 S
+ f dssf dszf ds;
S S S

XMo(sp+ L[Sy T1(SM (S35 To(S2)
XM o(S2[sD) T1(S)M o(81]%0),
where(T,« T,) denotes the term exchangifig for T, in
the preceding term. In a similar manner to the second-order

case, we can transform the traces of the above matrices into
the following expressions:

sl
f ds;Tr[M sy + L|sp) T3(sy)]
S

SotL
~ ~ sin g f ds,8(5) G5y,
S

SotL S
f ds, f dslTr[ Mo(So + LIS) T2(s)M o<szlsl)T1(sl)M o(S1so) + (T2 T)]
So So

1 (Sott S
=5 f ds, f dsi[cos (ko= 2442) = COSMo} [B(s2)Ga(s2) B(s1) G () + (G = Gy,
So So

Sotl S3 S
f d%f d%f dslTr{Mo(SHLISs)Tl(ss)Mo(%lsQ)Tl(sQ)M0(52|51)T1(sl)]
So So So

1ot (s (2 _ _ _
:ZJ dssf dSzJ dsi[sin(po = 2¢13) = sin(uo = 24 | = sin(uo = 2442 | + sin o
% 0 Is

X B(33)G1(S3) B(8,) G1(S) B(S1) Gy (8y) -

The trace of the product of, and T4, which are the inter-

Here, a, and b, are the Fourier components @s)G,(s).

fering terms of the first- and second-order deviations, is conThe term proportional to cogg corresponds to the part of
verted into the Fourier series by a similar method used tahe cross term ofu, and w; in the third-order expression

obtain the second-order case,

sotl S2
f dszf dSLTr[Mo(So+ LIS) T o(2)Mo(S5]S) T1(S1)
So So

XMo(silsp) + (T2 Ty)]
1 . :
=sin Mo[ g#oaz(o)aﬂo) + 21 ﬁ{az(n)al(n)
n= 0

1 Stk
+0y(by(n)} | = Scos o f dsB(s)Ga(s)
So

sotL
X{ f dSG(S)Gl(S)]- (62)
So

(32).

The integration of the term proportional to sif in the
triple product ofG,, the triple coupling between the first-
order deviations, can be easily casted into the cubic product
of the integral of the single integral:

so+L s3 S
J dsy f ds J ds18(s3)G1(S3) B(S2) Ga(S2) B(S1) Ga(S1)
% % %

1 sptL 3
= _{f dslﬁ(sl)Gl(Sl)i| ) (63)
So

6

which is canceled out with the cubic product of the first-
order chromaticityu, in Eq. (32). The other terms of the
triple product ofG, can be transformed into the Fourier se-
ries by means of the formula given in Appendix D:
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1 (ot 3 2
2 f dsy f ds, f dsi[sin(uo = 213) = sin(uo = 2013 = sin o = 212X B(s3) G1(S) B(S,) Ga(s2) B(S1) Gi(S1)
S S S

0

S(3ug = mn?)

1 1 2 1 . -
= GHOC0S 1024(0) [ RACRDY m{aﬁm + b%(n)}} =525 uo[uoaim + 221 “(Mg_—ﬂznz)zam{a%(n)

o Spn, 2_ 202
, wef3us — mA(n? + nm+ m?)}
b+ Znil (ud = 70?) (g~ 7P} g — 7(n + m)%}

+m)ay(n)b,(m) +by(n+ m)bl(n)al(m)}:| .

The terms proportional to cqg, in the right-hand side of the above equation together with that iri@)yresult in the product

of u, and i, in Eq. (32).

X{ay(n+m)ay(n)a;(m) — a;(n + mb;(n)by(M)+ by(n

Combining the above results, we find the Fourier representation of the third-order chrom@tejiys/ (27):

1 sO+L
&=, [ J ds1B(s)Gs(sy) - %az(O)al(O) -
T s

(3l = mn?)

) ©

Mo

3

n=1 4(,“(2) - mn?)

{aa(may(n) + by(nby ()} + £2a3(0)

pof3uh = m(n® + nm+ )}

+2

n=1 n,m=1

X{a,(n +m)a;(n)a,(m) — a;(n+ m)by(n)b; (M) + by(n +m)a;(N)by(m) + by(n+ m)by(n)ag (M)} |.

fand Ao 2 2
32(/_4% — 772n2)2 al(o){a]_(n) + bl(n)} + E 32(”% _ 772”2)(#3 _ Wzmz){ﬂg _ 772(n + m)z}

(64)

The explicit forms ofGs, a,(n), andb,(n) as well asa;(n) the four normal cells are shown in Fig. 1. The sdlisheg

andb,(n) are given in Appendixes B and C, respectively. It line indicates the horizontalertical) beta function and the

should be emphasized that the terms proportiona| tO,L(éOS dotted one the horizontal diSperSion function. The left ordi-
in the derivation of the cubic chromaticity, i.e., the product of nate expresses the scale of the beta functions, and the right

the linear and the square charomaticities, are completely ca®ne corresponds to the dispersion function. The boxes at a

celed out.

I1l. NUMERICAL CALCULATION

bottom express magnets, the highest ones of which corre-
spond to the quadrupole, the lowest to the bending, and the
remainder to the sextupole magnets, respectively. The hybrid
optics were used from March 1997, when the SPring-8 stor-
age ring commissioning began, to July 1999. In September

Now,lwe apply our f'ormula of nonlinear chromatiqity 10 1999 the second one, called the HHLV optics, whose hori-
the SPring-8 storage ring. By comparing the numerical rey a1 and vertical beta functions take high and low values at
sults with the measurements, we can determine the validity) e dispersion-free straight sections, respectively, went

of the formulation.

The energy of electrons circulating in the SPring-8 stor-
age ring is 8 GeV, and the circumference was about 1436 m
The original lattice of the ring is composed of 48 unit cells of
a double bend achromat. Four of the 48 cells lack bendingE
magnets for the purpose of installing long straight sections ofg
30 m. In the early years of the operation of the storage ring,‘%
the quadrupole magnets in the straight cells were used t
keep the 48-fold symmetry of the optics. The strong sextu-g
pole magnets are installed to cancel the chromatic effect ang@
the nonlinearity of the optics is considerably strong.

Until now, the SPring-8 storage ring has mainly operated
in three different optic configurations. One is the so called
hybrid optics, whose horizontal beta function, at the disper-
sion free straight sections, takes high and low values alter-
nately. The optics functions, i.e., the horizontal and vertical
betatron function and the horizontal dispersion function, in
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FIG. 1. Configuration of hybrid optics.
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40 _—‘_ _l\:}gﬁ:ﬁt‘:lege"'it;ofﬁnfzgggonI_l—l----horizomaldispersion function)] 2 TABLE I. List of linear optics parameters.
Optics vy vy IS &y
Hybrid 51.231 16.310 1.63 0.70
HHLV 43.159 21.358 7.06 4.09
LSS 40.199 18.350 7.18 6.37

Betatron Function [m]
[ui] uopoun,] uoiszadsiq

The calculation of each element of the lattice, including
the sextupole magnets, is divided into 200 pieces. We
summed the harmonics of a Fourier series up to 15000, for
which the series almost converged as can be seen in Fig. 5.
The thick lines denote the horizontal chromaticities, and the
thin ones represent those of the vertical. The solid lines in-
FIG. 2. Configuration of HHLV optics. dicate the second-qrder chromaticities_, and the dotted lines
correspond to the third. The Igftight) ordinate expresses the
scale of the secondthird-) order chromaticity. The thick-

. o . . ness of a sextupole magnet is very important for ensuring the
Figure 2 indicates the optic functions of the HHLV. In the convergence. The higher the order of the harmonics be-

summer shut down of 2000, we reconstructed the Storag8omes, the more times the Fourier component oscillates in

ring, i.e., we removed the focusing magnets in the fourmagnetic elements. Hence for higher harmonics, the contri-

straight cells to introduce 30-m-long magnet-free Sectionsy, inng of the pieces in an element cancel each other out so
We abbreviated the new optics as LSS, whose optics func[hat the Fourier series converges

tions are shown in Fig. 3. Typical values of the betatron tunes The range of the momentum deviation of the hybrid op-
and the linear chromapcmes are listed in Table . tics, where we can store the beam with enough lifetime to
We calculated the higher-order chromaticity of these threg o<\ re the betatron tune ranges only from —0.8% to
optics and compared the numerical results with the mMeasurg4 »o4 One finds that even ’in such a narrow range .of mo-
ments at the SPring-8 storage ring. Figure 4 ShQWS the Medientum deviation, the nonlinearity significantly affects on
sured and calculated betatron tunes of the hybrid optics as.g, chromaticity. But in this example with narrow momen-
function of the fractional momentum deviation. The circlestum acceptance. one cannot find the difference between the
are the measured horizontal tunes and the squares the verdis.ond- and third-order perturbative approximations
cal, respectively. The calculated horizontakrtica) tunes The optics change from the hybrid to the HHLV enlarged
are represented by the thihin) lines. In Fig. 4 the dotted the momentum range drastically. The measured and calcu-
lines denote the calculated tunes including only the lineaj;;c 4 tnes of the HHLV are shown in Fig. 6. One can see in
chromaticities, and the dashed lines correspond to th%ig. 6 that proportional to the increase in the order, the cal-

Second-c_)rder calculations. The calculated tunes including YBulated tunes approach the measured values. The increase of
to the third order are represented by the solid lines. The left

(right) ordinate expresses the scale of the horizottafti-

Path Length [m]

into service to use the insertion devices more effectively.

cal) tune. 515 ® measuredv, [ 7 ™ measuredv, [ 16.5
----- 1st-order - - - - - 1st-order
60 —. hoﬁ;ont:al b fu funcd | - - -- horizontal dispersion function'"’ 3 [ |~ -2nd-order — -2nd-order |
vertical | e 51.4 — — 16.4
1 f » 3rd-order 3rd-order
50 | ' | 125 2 3
Normal CG . . 2 =
s Cells atching Seﬁtlon g g ] g
= 40 : ' 23 0§ osial— et wwd g 163 &
g s 3 --em g £
E 30 1.5 E - B I Bty b g
i =]
5 20 18 Z 162 2
g 8 E ) 1 g
8 10} 05 E g AN 3
=] == N\
ok 0 ) 16.1
N
-10 -0.5
100 150 200 y 1
51 — — — —— 1 16
Path Length [m] -0.02 -0.01 0 0.01 0.02

. . . . Fractional Momentum Deviation
FIG. 3. Horizontal and vertical beta functions and horizontal

dispersion function of LSS optics over five cells including magnet-  FIG. 4. Betatron tunes of hybrid optics as a function of momen-
free section. tum deviation.
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510° 510° 40.5 o — o 18.5
I B Measured v ]
Sy = y
g = 5
= = & I
g 0 = 0 s 40.4 184
£ T = 2 ” -
g g : 5
o)
5 = 5 =3
£ y i 2 = r g
S 510° 510° B g 403 183 =
% ’ 2 £ ! g
g = A — & 3 B
% —] 22x E3)( 2 g
H—¢€ --& = F 5
- 2y &4 1 T 402 18.2
10— ==rrriil | 10° ] : 2 g
10° 10* 10? 10° 10* 10° = I g
Number of Harmonics E \_’/ I &
) ) _ o= b , ® Measured v, | -
FIG. 5. Convergence of Fourier series of nonlinear chromaticity ~ 40.1 = / e Istorder |1 181
of hybrid optics on the number of the summation. I '," — -2nd-order | ]
," 3rd-order
the momentum acceptance of the HHLV optics at the nega- 40 L /A S0 B BV wrn warerern was 18
tive momentum deviation reaches about three times that o -004 003 -002 001 0 001 002
the hybrid. We consider the cause of the expansion of the Fractional Momentaum Deviation 5

momentum acceptance to be attributed to the sign of the
second order of the horizontal chromaticity. In the HHLV  FIG. 7. Betatron tunes of LSS optics as a function of momentum
optics, a particle with a large momentum deviation keepgleviation.
away from an integer resonance line. However, in the hybrid,
it approaches the line. to the third order. We established a canonical equation of an
As a final illustration, Fig. 7 displays the tunes of the LSSoff-momentum particle motion based on the full order
optics. Comparing Fig. 7 with Fig. 6, we find that the non- Hamiltonian with respect to momentum deviation. Using a
linearity of the LSS optics is stronger than that of the HHLV transfer matrix formulation derived from the equations, we
optics. Due to the stronger nonlinearity, the momentum acgave a perturbative representation of the nonlinear chroma-
ceptance of the LSS optics seems to become narrower thditity, which looks like a Feynman integral. In the formula-
the HHLV. tion, we found that the Fourier expansion with respect to the
lattice periodicity has great effectiveness in extracting the
higher-order formula of the nonlinear chromaticity from the
IV. SUMMARY AND CONCLUSIONS transfer matrices. As an example, we calculated the nonlinear
) _ . chromaticities of the SPring-8 storage ring with three differ-
We derlved_ the perturba’qv_e formulg for the h|gher-orderent optics, whose numerical results agree fairly well with the
terms of nonlinear chromaticity of a circular accelerator Upyaasurements.

As found in the SPring-8 storage ring, the momentum

o measured v, || = measured v, acceptance is very sensitive to the higher-order nonlinearity
435 r 1 21.5 of the chromaticity. Higher-order terms of the nonlinear
----- 1st-order -===-1st-order J .. L .
] chromaticity are thus indispensable for the dynamics of a
— -2nd-order ||~ -2nd-order particle motion with a large momentum deviation.
434 L 3rd-order || —3rd-order _ " 1514
A TNy
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PP VA IO S D D B P the momentum deviatio®.
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FIG. 6. Betatron tunes of HHLV optics as a function of momen-
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Cyo= KZ +go.

For vertical motion,

By’o =1 ,
Cyo0=—0o
(2) First order.
Ax,l = Kx77(,)’

Bx,1: =1 +Ky7o,

Cy1= 9170,

By,l == 1+Ky7o,

Cy1=—0170-
(3) Second order.

A2 =Ky = K3mop,
Be2=1-Ky(mo= 1) + 370
Cu2= 59275 + Ga 7,
By2=1-Ky(m0= 1) + 377,

1 5
Cyo=- 592770 ~— 171

(4) Third order.
— ’ 2 3.2
Ay 3= Kympa = Ki(mm0 + m1m0) + Kmgmo,s
_ 3 2 3 2
Bx3=—1+Ky (70— 71+ 72) = 5Ksmomo™ + 30115 = 5767,
_1. 3
Cy3= 59370+ Qom0+ 91772,
_ 1 1
Bys=—1+Ky(o= 7+ 1) = 5Kmomp> + mimb = 5767
_ 1. 3
Cy3=—5937~ %2770~ 9172-

APPENDIX B: HIGHER-ORDER FORMULA FOR SIMPLE
CHROMATIC CONTRIBUTION

In this appendix we give the higher-order forms of the

integrandG, after performing partial integration,

sotL stk
f ds;8As1)GAs)) = J ds;G,(sy). (B1)
So So

(1) First order.

Gx,l == Bx(Ki +0o~ 917]0) - 2axKx77(,) + %Ky 70, (B2)

é‘y,l = By(go —0170) + ')’ny770- (B3)

PHYSICAL REVIEW E 70, 016501(2004

(2) Second order.

Gu2= B K21 - 3767) — Ko+ 3K 73 + 0o

—0u(7o— 1) + %927/3]‘ 20, (Kymy — K>2<7/0776)
+ y( K = 3K278 + 36?) (B4)

Gyo=- ﬁy[%Kf(’?(,)Z +00~ O1(mo— 7)) + %92773]
+9(Kemy = 3KE75+ 367). (B5)
(3) Third order.

Gy3= = BIKI(L +379m1) ~ K mol1 +376) = )
- Ki’?0771+ %Kiﬂg + 90(1 + 37762) - 91{ 770(1
+ 5762) m+ 1} + 9al(3 76 = momn) — §93770)
= 2a,{ Ky = KE(mhmy + momh) + Kb o]
+ K72 = B077) = Kimomy + 5K3 5 + 3t
(B6)

éy,B = By[‘ %Ki( 77+ mom) + Kmomh? + go(l + %7762)
—g{ (1 +377) = m+ mop + G578 - mom)
- %937]8]
+ [ K72 = oms?) = K moms + 5K mg + .
(B7)

APPENDIX C: HIGHER-ORDER FORMULA FOR
FOURIER COMPONENTS OF G

In this appendix we give the higher-order forms of the

Fourier components d&, ,, after performing partial integra-
tion,

sotL .
8y () = —— f dslcos{ﬂcpxsl)}ﬁz(soez,m(sl),

Mz,0J s, Mx,0
(C1

SotL 2
bym(n) = —— f dslsin{ M goz<s1>]ﬁz<s1)ez,m(s1>.
Mz0 S Mz,0

(C2
(1) First order. After performing the partial integration,

we have the explicit forms of the above integrals,
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a 4(n 2 (%ot -
L 1(N) _ _J ds {6,
bx,l(n) Mx,0J s,
_i(an)zK cos| 2mn )
26,\ ixo x7o sin | o — S

+277n( ” « ,>sm 27 ( )]
fix0 \ By xTo ~ RxTlo cos| o S

(C3)

and
a,,(n _ 2 fSO+L H
=— ds;| 1 G
bya(M)  py0) s, i
1 (27-rn)2K }COS{ZWH (S)}
-\ . @
28,\ 1150 x70 sin| y\S1

2 a sin | 27
+ T {—<p (sl)H (CH
My,0 By °cos M Y

(2) Second order
an) 2 (ot . 1 (2mn)\?
x,2<>=_f dslHGX’Z__< W>
bx,Z(n) Mx,0J g 25, Mx,0
1 3,
X<Kx7]1‘§K>2<7IS+§”’702>}
><COS 2mn (s)) b+ 2mn aX<K 1K 5
sin Mx,quXSl B, XML~ 2 x7o

3, | sin 2amn
+§7lo ~ Ky + Ko c0s| .0 —¢y(s)

(CYH)
and
a,»(n 2 (ot - 1 [2mn)\?
y,2( ):_f dsl[{Gy,Z__<i>
by,2(n) My,0J s, 2:8y My,0
1 1
X\ Kymy = 2Kx7lo+2770
Ccos| 27n 27N« 1
X 1 —efs) [ —2(K =K?
sm{,u ‘Py( 1)} My,Oﬂy( xT1— 2 x770
1 sin | 27n
- S C6
2770 )COS{M <Py( 1)}} (C6)
APPENDIX D: CALCULATION OF FOURIER

TRANSFORM
Here we use the complex Fourier transformation,

BH@)Cy(@) = 2 f(n)e?melro, (D1)

n=-o

wheref(n)=[a(n)-ib(n)]/2.

At first, we review the calculation of the double integral

appearing in the second-order chromaticity,

PHYSICAL REVIEW E 70, 016501(2004)

Mo (%)
J de, f de;cog uo = 2, + 2¢1) B 2)
0 0
X Gy(¢2) B(¢1)G1(¢1)
o ® ,
0 0
X Gl(@z),gz(@l)Gﬂ%)]
2 .
Y o N N7
n, rg—oo 2'(:“«0 +7rm) (e 05n+m,0

_ SiN# )f( )f(m)]

The second term of the above equation is pure imaginary,
1

. f(n  f(m)

2

—ug Sin EEE——
21" Mon,mzz—oc Mo = TN po + M

i f(n)

e (pg = N)

2

1 5
= Sin
2 Mo Mo

so that it has no contribution to the integral. Here we have
used the defining identitf(-n)=f*(n) with the symbol=
denoting the complex conjugate. Using the same identity, we
can rewrite the first term as

12} ¢2
f de, f de1Cog o — 29, + 2¢01)
0 0

X B 2)G1(¢2) BA(¢1)G1( 1)
* 2
=sin o 3} mlfmz

3
1 A(ud - ﬂl %)
Next we calculate the triple integrals in the third-order chro-

maticity, each of which, after the integration, becomes, re-
spectively,

o 3 ©
f d<P3f d‘sz desSin(ug — 2¢3+ 2¢4)
0 0 0
X B(3)G1(¢3) B 92) G1(p2) B2(91)Gal )

2
Ho
_lm[nm%—ocel 2'(7T€+:U'0) {Zi[ﬂo"' 7T(m+€)]

=sin Mo[ Moal(O) 2 {al(n) + b (n)}

Mo
2i (N = o)

_( Mo Mo )
2i[po+ m(m+0)] 2|[Mo m(n+m)]

—2i
X 5n+m+€,0 - € MO&m,O

Mo

0 a2iug
X (e 1)}f(n)f(m)f(€))
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Mo ¢3 ¢2 )
J d‘Paf d@zf desSin(ug — 293+ 2¢,)
0 0 0

X B%(93)G1(p3) BA¢2)G1(¢2) B(91) Gy (7))

:|m< g eiuo{_

n,m,{=-x
X |::U’05n+m+€,0

Mo Mo
2i[m(m+€) + po] 2i(mm+ )

Mo

M0 (s 2ipg -
2i(mn = o) © 1)]

n Mo Mo
2mi€ 2i(mm+ o)

|

><f(n)f(m)f(€)),

1o 3 ¢ _
f d<P3f d‘sz desSin(ug — 29, + 2¢1)
0 0 0

X B ¢3)G1(¢3) BA02) Ga(@2) B (01)G1( 1)

:Im< > gmo

n,m,{=-x
X (108hme,0~ MoOn ) + (

(M05n+m+€,0 - M05n+m,0)

2

0
Mot ?05n+m,0:| 56,0}

Mo

n Mo
2i(mm+ o)

2mi(n+m)

Mo
2i7'r(m+ €)

2i(me +Mo){

Mo
—+—5 5
27in 2 0) 6,0
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|

x (e 2k0 — 1) — ,U«o5n,o} }f(n)f(m)f(f)) )

_ Mo
2i(rm = o)

Mo
2im{(n+m) - e}

Collecting the above integrals, we have
K0 3 ¢2 .
f dQDsJ d‘sz dea[Sin(uo = 2¢3+ 2¢1)
0 0 0

= sin(pg = 2¢3+ 2¢;) = Sin(ug = 2¢, + 2¢,)]
X:82((P3)Gl(¢3),82(¢2)G1(§02)ﬁ2(¢1)61( ®1)
2

1 A(ud- wznz)

1
Eﬂocosﬂoal(m[ G0+ 2

1
- Esm Mo[#oal(o)

x{af(n) +b (n)}]
,U«o(3Mo 7N 2)
( o - 71,2 2)2

wud(3ud - 7(n? + nm+ mP)}
- ) (ufy — T {ug - T(n+ m)?

x{a,(n)ay(m)ay(n+m) +ay(n)b;(m)by(n + m)

23

n=1

+2 >

nm=1 (:“0

a4(0){af(n) + bi(n)}

+b;(n)ay(m)by(n+m) — by (n)b;(M)ay(n + m)}}
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